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Suppressing complexity via the slaving principle
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The complexity of a nonlinear dynamic system can be suppressed by adding an external period force with
appropriate choice of frequency and amplitude directly on the slowly changing variable of the system. Nu-
merical results indicate that the method not only can suppress chaos but also is robust to the additive external
noise.

PACS number~s!: 05.45.2a, 52.35.Kt, 52.35.2g
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In many nonlinear dynamic systems, the dynamic va
ables can be divided into the fast changing variable~s!~FVs!
and the slow changing variable~s!~SVs!. The average period
of the FVs are relatively shorter than those of SVs. On
other hand, the slaving principle@1# tells us that the FVs can
be slaved by the SVs. Hence, one can conceive that, if
can tame the SVs in a nonlinear dynamical system by so
method, the FVs will be transited into simple motions fro
the complexity ones by the slaving principle. Thus the co
plexity of a dynamical system can be suppressed.

Enlightened by the above idea, we suggest a metho
suppression complexity through the following routes:~i!
search for an SV and its maximum amplitude,I 0, in the
nonlinear dynamic system by time series analysis;~ii ! mark
the main oscillation frequency region,@v1 ,v2#, of the SV
via its power spectrum density analysis;~iii ! add an externa
force, h cos(vt), directly to the SV;~iv! search for the suit-
able parametersh andv in the range 0 – 0.1I 0 and@v1 ,v2#
respectively, with which the complexity of the system can
controlled. The controlling results can be convinced by o
serving the time series or calculating the Lyapunov expon
spectra~LES! of the system.

In fact, the above controlling method is the so-call
‘‘open-loop’’ scheme@2#. In contrast to the ‘‘closed-loop’’
technique inspired by Ottet al. @3#, which needs a fast re
sponding feedback system to produce an external signa
response to the system’s dynamics, the algorithms of ‘‘o
loop’’ scheme are independent of the system state, e.g
does not need feedback response system. Although usin
‘‘open-loop’’ methods on the system to control complex
have been studied extensively in the past decade@4–8#,
within our knowledge, most of them are carried out by p
rameter perturbation, only a few study the controlli
mechanisms and add the external force directly to the
tem. In this paper, we present examples of controlling co
plexity by using the slaving principle, and discuss the effe
of additive noise on the controlled system. The effectiven
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of the method is tested by numerical simulations. We exp
that it could be realized in experiments.

This paper is organized as follows. First, we give thr
examples to demonstrate the effectiveness of the contro
scheme. Then, the mechanism of the controlling metho
analyzed, which is attributed to the slaving principle. Ne
the effects of additive noise on these systems are discus
A brief conclusion and potential applications of the meth
are given lastly.

The first example is the Rose-Hindmarsh~RH! model,
which can be used to describe the bursting behavior of n
rons @9#. It reads

ẋ5y2ax31bx21I 2z,

ẏ5c2dx22y, ~1!

ż5r @s~x2x* !2z#,

wherex is the electrical potential of the biology membraney
is the recovering variable,z is the adjusting current, the pa
rameters are set at the standard valuesa51, b53, c51, d
55, x* 51.6, s54, and onlyr and I are chosen as the con
trol parameters. The LES of the system at (I 52.8,r
50.013) are (0.2,0,21) and the corresponding chaotic tr
jectory is shown in Fig. 1~a!.

Comparing the time series of the three variables, one
find that z is the SV. Hence, we add an external for
h1cos(2pf1t) directly on the right-hand side of the thir
equation, and hope that the chaos can be controlled
choosing parametersh1 and f 1 properly. To this end, the
following three steps are considered:~i! limit the candidate
frequencies in the range@5,25# by analyzing the power spec
trum densities of variablez @Fig. 1~b!#; ~ii ! confine the proper
h1’s in the range@0,0.2# according to the amplitude of vari
ablez; ~iii ! select the suitable parameters via computing
LES. As a result, the LES of the system under control
displayed in Fig. 1~d!. Figure 1~c! shows the controlled tra
jectory of system~1! at (h150.02,f 1510), the correspond-
ing power spectrum densitiesS2 of variablez are shown in
Fig. 1~b!. It is clear that the chaos has been suppressed.
4417 ©2000 The American Physical Society
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The second example is the Pikovsky circuit, which is
autostochastic generator. It can be expressed as@10#

ẋ5y2dz,

ẏ52x12gy1az1b, ~2!

m ż5x2z31z,

wherex,y,z stand for the characterized quantum of the c
cuit, d, g, b, m, anda are parameters that can be determin
by the elements of the circuit. In this study, we takeb50,
d50.66, a50.165, g50.17, and choosem as the control
parameter. Numerical simulation results show that sys
~2! displays a chaotic motion whenm50.047. To suppress
chaos, we add an external forceh2 cos(2pf2t) on the right-
hand side of the third equation in system~2!, and use the
methods to search for the suitable control parameters. I
dicates that there indeed exist some suitable parameters
an example, the trajectories of system~2! before and after
control are shown in Figs. 2~a! and 2~b!, respectively.

The third example is an injection two-level laser syste
@11#. It reads

Ė15b~uE22E1!1bF12b~P1E11P2E2!,

Ė252b~E21uE1!12b~P2E12P1E2!,

Ṗ152~P12DP2!1D~E1
22E2

2!, ~3!

Ṗ252~P21DP1!12DE1E2 ,

Ḋ52s~D2R!24~P1E1
22P1E2

212P2E1E2!,

where E(5E11 iE2) is the intensity of the laser field,P
(5P11 iP2) is the polarization intensity of the media,D is
the density of population inversion,F stands for the intensity

FIG. 1. ~a!, ~c! The trajectories of system~1! before and after
the controlling with control parameterh150.02,f 1510. ~b! The
power spectrum densities of variablez before (S1) and after (S2)
the controlling.~d! The LES of system~1! on the control paramete
plane, where the circles, pluses and crosses stand for three ca
LES as (0,2,2), (0,0,2), and (1,0,2), respectively.
n

-
d

m
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of the external injection field, andb, s, u, D, andR are the
system parameters. The parameters are set at the sta
values @11# b50.45, s50.04, u5150, D5100, and F
5150, and onlyR is chosen as the control parameter. N
merical studies indicate that whenR5350, system~3! shows
a chaotic motion. By time series analysis, one can find t
E1 or E2 are slow variables, hence, we add an external fo
h3 cos(2pf3t) on the right-hand side of the first equation
system~3! to control the chaos. Suitable control paramet
can be found by this method. As an example, Figs. 3~a! and
3~b! show part of the trajectory onE12P1 plane before and
after control.

To analyze the mechanism of the control method m
tioned above, let us observe the transient time of variab
from a chaotic state to a periodic state when a control sig
is added to the three systems. For describing it clearly,
take the RH model as an example. From the time series ox,
y and z in system~1!, one can see that the transient tim
tk* (k5x,y,z), of the SV and FVs are different. In order t
determinetk* , let us calculate the relative average amplitu
value of each variable as

r k~ t !5uvk~ t !/ v̄ku ~k5x,y,z!, ~4!

wherev̄k is the time average value ofvk in the periodic state
and vk’s are the points on the Poincare´ section @12#. For
example, the results ofr x(t), r y(t), and r z(t) are shown in
Fig. 4, and one can see that, after adding the control sig
r k(t) oscillates around 1 in the early stage, and approac
to 1 asymptotically. In order to analyze this process in m
detail, we define the relative average errors of each varia
as

ek~ t !5uvk~ t !2 v̄ku/ v̄k ~k5x,y,z!. ~5!

The inset in Fig. 4 displays the corresponding results for
RH model. It shows that in the decreasing phase ofek , it

FIG. 2. The trajectories of system~2! before~a! and after~b! the
controlling with control parameters at (h250.288,f 250.2).

FIG. 3. The trajectory of system~3! before~a! and after~b! the
controlling with control parameters at (h350.96,f 3512.5).
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almost decreases linearly in the logarithmic diagram, wh
in the periodic phase,ek becomes almost a constant. Th
turning point givestk* .

Using the same trick mentioned above, we obtaintk* ’s for
the Pikovsky circuit and the laser system. The results of
three systems are shown in Fig. 5. It depicts that the
mode is controlled firstly, then the faster ones.

Moreover, to test if the results, obtained in Fig. 5, a
dependent on the modes to which the control signal is ad
we add the control signal to FVs to control chaos. The ty
cal results are shown in Table I. For the RH model, if we a
control signal, 0.07 cos(80pt), to the fastest modey ~the fast
mode controlling!, the transient times aretx* 53500, ty*
53800, tz* 51400; while if we add 0.09 cos(50pt) to an-
other fast modex ~the middle mode controlling!, the results
are tx* 51120, ty* 51280, tz* 5960. Comparing with the
slow mode controllingresults, tx* 5900, ty* 51000, tz*
5700 @Fig. 5~a!#, we find that~i! in any case, the SV is
controlled firstly, the fast one later, and the fastest one
last; and~ii ! the transient times for the slow mode controllin
are the shortest ones, for the fast mode controlling is
longest one. One can see the similar results in the Pikov
circuit. For the laser system, however, we cannot find
suitable control parameters to suppress chaos in the stu
parameter regime, if the control signal is added to the FV

From these results we conclude that, by using our tim
periodic signal to control chaos, the variables will be co

FIG. 4. The variables’ relative amplitude valuer k and their rela-
tive average errorsek~the inset! as a function of time for the RH
model.

FIG. 5. The transient time,tk* , as a function of system variable
for the three systems. HereT0 stands for the period of the contro
ling signal, it equals 0.1s, 5s, and 0.08s for~a!, ~b!, and~c!, respec-
tively.
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trolled one by one from SV to FVs. The faster the variable
which the signal is added, the longer transient time is nee
if the system can nevertheless be controlled. This phen
enon can be understood by the slaving principle in syner
ics @1#. In the transient stage, an SV, which is affected by
control force, plays an important role as an order param
in the system, and the FVs can be slaved by the SV. Beca
of different nonlinear coupling intensities, the transient tim
of FVs are different.

Now, we discuss if the aforementioned controlling tec
nique is robust to an external noise. To this end, we add
additive noise directly to the three systems. Hence, the r
tive equations of systems~1!, ~2!, and ~3! can be written,
respectively, as

ż5r @s~x2x* !2z#1h1 cos~2p f 1t !1A2D1j~ t !, ~6!

m ż5x2 f ~z!1h2 cos~2p f 2t !1A2D2j~ t !, ~7!

and

Ė15b~uE22E1!1bF12b~P1E11P2E2!

1h3 cos~2p f 3t !1A2D3j~ t !, ~8!

where j(t) is a Gaussian white noise with the statistic
properties ^j(t)&50,̂ j(t)j(t8)&5d(t2t8),Di( i 51,2,3) is
the noise intensity.

Mannella’s algorithm@13# is used to numerically simulate
the stochastic differential equations. To observe the effe
of noise on the three systems, we define a quantityr to
characterize it, which is expressed as

r i5S hi

Dwi
D Y S hi

(0)

Dwi
(0)D ~ i 51,2,3!, ~9!

wherehi is the peak height of the spectrum at frequencyf i ,
with noise intensityDi ,Dwi is the width of the peak at a
height h85 1

2 hi , hi
(0) , andDwi

(0) stand for the peak heigh
and width in the case without noise, respectively.

In the numerical simulation, the noise intensities are c
sen from 1% to 50% of the amplitudes of the external forc
Figure 6 shows the results ofr vs. relative noise intensities
Rd@Rd5A2Di /h i ( i 51,2,3)] for the three systems. It can b
seen that the RH model is the most robust one in the th
systems, its spectrum density peak almost does not cha
even though the external noise intensity reaches 50% of
control signal’s amplitude. The laser system is sensitive
the external noise very much, if the intensity of the no

TABLE I. The transient time for different models while th
controlling signal is added to the FVs.

Models Signal added (h, f ) (tx* ,ty* ,tz* )
mode

RH x ~0.090, 25.0! ~1120, 1280, 960! ms
y ~0.070, 40.0! ~3500, 3800, 1400! ms

Pikovsky x ~0.256, 0.50! ~400, 470, 355! s
y ~0.032, 0.25! ~64 , 76, 35! s
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reaches 10% of the control signal’s amplitude,r decreases to
0.2. The Pikovsky circuit is the intermediate one in the th
systems.

In conclusion, we have successfully suppressed chao
directly adding a periodic force on the system. Appropri
input frequencies can be chosen by analyzing the spec
of the chaotic attractors. In the controlling process, the v

FIG. 6. r as a function of relative noise intensities,Rd , for the
three systems. The triangles, squares, and circles are for sys
~1!, ~2!, and~3!, respectively.
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ables are controlled one by one from SV to FVs. The mec
nism of the control method can be understood by the slav
principle. The effects of additive noise on the three typic
systems show that the method is robust to environme
noise. In contrast to the feedback method for which o
needs the knowledge of the target state, the present meth
easier to be realized in practical experiments.

We argue that the method may have some potential ap
cations on neuron science and laser technology. For
ample, one can use this idea to design a laser system
which the output frequency can be adjusted by the freque
of the external control signal, or select an ideal output f
quency to improve the laser’s quality. While for neuron
since the variables in some important neuron models@14#
can be divided into SV and FVs, and the final controll
state is strongly dependent on the amplitude and freque
of the external signal~not shown in this report!, the method
may be used to study the rhythms of the neurons, and
terns of neuronal networks by the experimental biologists
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