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The complexity of a nonlinear dynamic system can be suppressed by adding an external period force with
appropriate choice of frequency and amplitude directly on the slowly changing variable of the system. Nu-
merical results indicate that the method not only can suppress chaos but also is robust to the additive external
noise.

PACS numbdrs): 05.45-a, 52.35.Kt, 52.35:g

In many nonlinear dynamic systems, the dynamic vari-of the method is tested by numerical simulations. We expect
ables can be divided into the fast changing vari@lEVs)  that it could be realized in experiments.
and the slow changing varialt&(SVs). The average periods This paper is organized as follows. First, we give three
of the FVs are relatively shorter than those of SVs. On theexamples to demonstrate the effectiveness of the controlling
other hand, the slaving princip[&] tells us that the FVs can scheme. Then, the mechanism of the controlling method is
be slaved by the SVs. Hence, one can conceive that, if wanalyzed, which is attributed to the slaving principle. Next,
can tame the SVs in a nonlinear dynamical system by som&'€ effects of additive noise on these systems are discussed.

method, the FVs will be transited into simple motions from A brief conclusion and potential applications of the method

the complexity ones by the slaving principle. Thus the com-2r€ given lastly. , ,
The first example is the Rose-Hindmar&8RH) model,

plexity of a dynamical system can be suppressed. . . . )
Enlightened by the above idea, we suggest a method dﬂrl:(sj[]g]ca{t] rk;eag:ed to describe the bursting behavior of neu-

suppression complexity through the following routds:
search for an SV and its maximum amplitudg, in the
nonlinear dynamic system by time series analy8ig;mark
the main oscillation frequency regiohe;,w,], of the SV

x=y—ax>+bx?+1-z,

via its power spectrum density analysisi) add an external y=c—dx?-y, (1)
force, n cos(t), directly to the SV;(iv) search for the suit-
able parameterg andw in the range 0-01} and[ w1, w5] z=r[s(x—x*)—z],

respectively, with which the complexity of the system can be

controlled. The ControIIing results can be convinced by Obwherex is the electrical potentia| of the b|0|ogy membraye,
serving the time series or calculating the Lyapunov exponeris the recovering variable, is the adjusting current, the pa-
spectra(LES) of the system. rameters are set at the standard valaesl, b=3,c=1, d
In fact, the above controlling method is the so-called=5, x*=1.6,s=4, and onlyr and| are chosen as the con-
“open-loop” scheme[2]. In contrast to the “closed-loop” trol parameters. The LES of the system dt=@.8f
technique inspired by Ot al. [3], which needs a fast re- =0.013) are (0.2,6;1) and the corresponding chaotic tra-
sponding feedback system to produce an external signal ijectory is shown in Fig. (8).
response to the system’s dynamics, the algorithms of “open Comparing the time series of the three variables, one can
loop” scheme are independent of the system state, e.g., find that z is the SV. Hence, we add an external force
does not need feedback response system. Although using thgcos(2rft) directly on the right-hand side of the third
“open-loop” methods on the system to control complexity equation, and hope that the chaos can be controlled by
have been studied extensively in the past decades], choosing parameterg, and f, properly. To this end, the
within our knowledge, most of them are carried out by pa-following three steps are considergd: limit the candidate
rameter perturbation, only a few study the controllingfrequencies in the rand®,25] by analyzing the power spec-
mechanisms and add the external force directly to the sysrum densities of variable[Fig. 1(b)]; (ii) confine the proper
tem. In this paper, we present examples of controlling com,’s in the rangd 0,0.2] according to the amplitude of vari-
plexity by using the slaving principle, and discuss the effectsable z (iii) select the suitable parameters via computing the
of additive noise on the controlled system. The effectivenes§ES. As a result, the LES of the system under control are
displayed in Fig. d). Figure 1c) shows the controlled tra-
jectory of system(1) at (n,=0.02,f;=10), the correspond-
*Corresponding author. Email address: szzhang@bnu.edu.cn ing power spectrum densiti€, of variablez are shown in
"Mailing address. Fig. 1(b). It is clear that the chaos has been suppressed.
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: A R I of the external injection field, ang, o, 6, A, andR are the
SEEELTERR Y system parameters. The parameters are set at the standard
-000 10 20 30 40 S0 values [11] B=0.45, ¢0=0.04, #=150, A=100, and F
f1(Hz) =150, and onlyR is chosen as the control parameter. Nu-

merical studies indicate that wh&= 350, system{3) shows

FIG. 1. (a), (c) The trajectories of systertl) before and after a chaotic motion. By time series analysis, one can find that
the controlling with control parametep,=0.02,f;=10. (b) The  E, or E, are slow variables, hence, we add an external force
power spectrum densities of varialitebefore ;) and after §;) 4, cos(2rf4t) on the right-hand side of the first equation in
the controlling.(d) The LES of systent1) on the control parameter system(3) to control the chaos. Suitable control parameters
plane, where the circles, pluses and crosses stz_ind for three cases@h be found by this method. As an example, Figs) and
LES as (0-,—), (0,0;-), and (+,0,—), respectively. 3(b) show part of the trajectory o, — P, plane before and
after control.

To analyze the mechanism of the control method men-
tioned above, let us observe the transient time of variables
from a chaotic state to a periodic state when a control signal

The second example is the Pikovsky circuit, which is an
autostochastic generator. It can be expressdd@s

X=y—éz, is added to the three systems. For describing it clearly, we
: take the RH model as an example. From the time seriegs of
y=—X+2yy+az+p, (2 yandzin system(1), one can see that the transient time,

mr (k=X,y,2), of the SV and FVs are different. In order to
determiner; , let us calculate the relative average amplitude
value of each variable as

uz=x—27+2,

wherex,y,z stand for the characterized quantum of the cir-
cuit, 8, y, B, u, anda are parameters that can be determined
by the elements of the circuit. In this study, we tgke 0,

6=0.66, «=0.165, y=0.17, and choosg. as the control wherev, is the time average value of, in the periodic state
parameter. Numerical simulation results show that system ; : K !
(2) displays a chaotic motion whem=0.047. To SUPPress and v,’s are the points on the Poincasection[12]. For

; example, the results af(t), r,(t), andr,(t) are shown in
chaos, we add an external foreg cos(2rf,t) on the right- . Y . .
hand side of the third equation in systa@), and use the Fig. 4, and one can see that, after adding the control signal,

methods to search for the suitable control parameters. It inr-k(t) oscillates around 1 in the early stage, and approaches

. . . . 0 1 asymptotically. In order to analyze this process in more
dicates that there indeed exist some suitable parameters. : . . .
: . etail, we define the relative average errors of each variable
an example, the trajectories of systé®) before and after

control are shown in Figs.(d) and 2Zb), respectively. as

The third example is an injection two-level laser system —
1 e reads ’ g aO=lo)~villvi (k=xy.2). (5

rd(O=v)/v]  (k=xy,2), 4

The inset in Fig. 4 displays the corresponding results for the

E1=pB(0E,—Ey) + BF+2B(P1E; + P3Ey), RH model. It shows that in the decreasing phase,af it

E,=—B(E,+ 6E,)+2B(P,E;— P,E,), 120 : 20

(b)
P,=—(P;—AP,)+D(E2—E2), (3) 60 10
i a 0 a 0
P2: _(P2+AP1)+2DE1E2,
-60 S ) -10
D=—0o(D~R)—4(P,E{~P1E;+2P,E E,), 120 S 20 -
-16 -8 E? 8 16 -1.0 -0.5 ](%10 0.5 1.0

where E(=E;+IiE,) is the intensity of the laser field?

(=P, +iP,) is the polarization intensity of the mediB, is FIG. 3. The trajectory of systeit8) before(a) and after(b) the
the density of population inversiof, stands for the intensity controlling with control parameters ag¢=0.96,f;=12.5).
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0.02 - TABLE I. The transient time for different models while the
LER. N controlling signal is added to the FVs.
0.00 — —
I Models Signal added %, T) (7% .7y ,73)
’3-0.02 i _ mode
=
5-0.041 x g, RH X (0.090, 25.0 (1120, 1280, 96DPMs
%0-0 06 & y (0.070, 40.0 (3500, 3800, 1400ms
= : =8 Pikovsky X (0.256, 0.50 (400, 470, 3555
008 | i ] y (0.032, 0.25 (64,76,33s
Yy’ 0 500 . 1ooo 1500 2000
010l S e ol
0 . 700 1400 trolled one by one from SV to FVs. The faster the variable to
time(ms) which the signal is added, the longer transient time is needed

if the system can nevertheless be controlled. This phenom-
enon can be understood by the slaving principle in synerget-
ics[1]. In the transient stage, an SV, which is affected by the
control force, plays an important role as an order parameter
é'n the system, and the FVs can be slaved by the SV. Because
of different nonlinear coupling intensities, the transient time
of FVs are different.

Now, we discuss if the aforementioned controlling tech-
nigue is robust to an external noise. To this end, we add an
dditive noise directly to the three systems. Hence, the rela-
ve equations of systemd), (2), and (3) can be written,
respectively, as

FIG. 4. The variables’ relative amplitude valugand their rela-
tive average errorg,(the inset as a function of time for the RH
model.

almost decreases linearly in the logarithmic diagram, whil
in the periodic phaseg, becomes almost a constant. The
turning point givesry .

Using the same trick mentioned above, we obtgits for
the Pikovsky circuit and the laser system. The results of th
three systems are shown in Fig. 5. It depicts that the S i
mode is controlled firstly, then the faster ones.

Moreover, to test if the results, obtained in Fig. 5, are
dependent on the modes to which the control signal is added,
we add the control signal to FVs to control chaos. The typi-
cal results are shown in Table I. For the RH model, if we add .
control signal, 0.07 cos(8ft), to the fastest modg (the fast nz=x—"1(z)+ 7, cog2mf,t) + V2Do&(1), @)
mode controlling, the transient times are} =3500, 7}
~3800, * = 1400; while if we add 0.09 cos(5a) to an-  2"d
other fast mode (the middle mode controllingthe results

z=r[s(X—x*)—z]+ 5, cog 2mf t)+ 2D, &(t), (6)

are 75 =1120, 7y, =1280, 7, =960. Comparing with the E1=B(0B,—Ey) + BF+2B(P1E1 T PoEy)
slow mode controllingresults, 7; =900, 7j=1000, 7; + n5coq 27f5t) + 2D 3&(1), €)

=700 [Fig. 5a)], we find that(i) in any case, the SV is

controlled firstly, the fast one later, and the fastest one thgvhere £(t) is a Gaussian white noise with the statistical
last; and(ii) the transient times for the slow mode controlling properties (£(t))=0,(&(t) €(t"))=8(t—1"),D;(i=1,2,3) is

are the shortest ones, for the fast mode controlling is thehe noise intensity.

longest one. One can see the similar results in the Pikovsky Mannella’s algorithn{13] is used to numerically simulate
circuit. For the laser system, however, we cannot find outhe stochastic differential equations. To observe the effects

suitable control parameters to suppress chaos in the studigfl noise on the three systems, we define a quantitio
parameter regime, if the control signal is added to the FVscharacterize it, which is expressed as
From these results we conclude that, by using our time-

periodic signal to control chaos, the variables will be con- h, hi(O)
— \O T j o0 ' j
(@ R-H 5] (0 Plkovs%y’ N[ Laser 5 | \hereh, is the peak height of the spectrum at frequeficy
with noise intensityD; ,Aw; is the width of the peak at a
= ¢ o] st heighth’=h;, h®, andAw(®) stand for the peak height
E £ 3 g and width in the case without noise, respectively.
3 . | 5 ] In the numerical simulation, the noise intensities are cho-
A A A A A A LA A A sen from 1% to 50% of the amplitudes of the external forces.
<Lz X y| [z .y x| QB B D Figure 6 shows the results pfvs. relative noise intensities
=

Mod R4[Ry= 2D,/ 7 (i=1,2,3)] for the three systems. It can be
odes seen that the RH model is the most robust one in the three
FIG. 5. The transient time; , as a function of system variables Systems, its spectrum density peak almost does not change
for the three systems. Heflg stands for the period of the control- €ven though the external noise intensity reaches 50% of the
ling signal, it equals 0.1s, 5s, and 0.08s fax, (b), and(c), respec-  control signal’s amplitude. The laser system is sensitive to
tively. the external noise very much, if the intensity of the noise
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1.2 : B : — ables are controlled one by one from SV to FVs. The mecha-
- nism of the control method can be understood by the slaving
1.0 é ﬁ A A A A A A A AT principle. The effects of additive noise on the three typical
O systems show that the method is robust to environmental
08 o ] ] noise. In contrast to the feedback method for which one
I O needs the knowledge of the target state, the present method is
Q& 06} o O 1 easier to be realized in practical experiments.
I O We argue that the method may have some potential appli-
0.4F (@) 0 7 cations on neuron science and laser technology. For ex-
I 0 O ample, one can use this idea to design a laser system with
0.2} @) 0 which the output frequency can be adjusted by the frequency
I 0] 1 of the external control signal, or select an ideal output fre-
0.0+ — T A quency to improve the laser's quality. While for neurons,
102 Ry 101 since the variables in some important neuron mod&t

can be divided into SV and FVs, and the final controlled

FIG. 6. p as a function of relative noise intensitigy, , for the ~ State is strongly dependent on the amplitude and frequency

three systems. The triangles, squares, and circles are for systerfd§ the external signalnot shown in this repoyt the method
(1), (2), and(3), respectively. may be used to study the rhythms of the neurons, and pat-

terns of neuronal networks by the experimental biologists.
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